首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
化学   27篇
力学   2篇
数学   6篇
物理学   17篇
  2023年   1篇
  2022年   4篇
  2021年   14篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Effect of induced magnetic field is critical as a result of much controlled and focused on liquid flow is wanted in numerous modern and clinical procedures for example electromagnetic casting, drug delivery and cooling of nuclear reactors. Hence this investigation explains the behaviour of hybrid carbon nanotubes (CNTs) flow through slipped surface with induced magnetic field. Accumulation of SWCNTs (single wall) and MWCNTs (multi wall) nanomaterial with water base liquid is considered. Thermal performance is analyzed with regular heat source/sink effect. Chemical reaction and activation energy impacts are incorporated in mass equation. Solution of the similarity equations are obtained by adopting RKF45 method. Influence of flow variables are illustrated through graphs and computational values of drag force, Nusselt number and Sherwood number are presented in tables. It is noted that activation energy enhance the concentration field whereas opposite behaviour for reaction rate. Also induce magnetic field boosted with the larger values of magnetic Prandtl number. Furthermore it is observed that hybrid CNTs nanomaterial having higher rate of heating/cooling compare to singular CNTs nanomaterial.  相似文献   
2.
3.
4.
Fault tree analysis (FTA) is a promising quantitative technique for risk analysis in chemical process industries (CPIs). In FTA, a certain sequence of basic events (causes) leads to one specific Top event (critical event of interest). However, the conventional fault tree analysis has the limitations of staticity and uncertainty. The staticity in conventional FTA arises due to its inability to accommodate time-dependent characteristics of the process system. Whereas uncertainty primarily lies in the failure probability data of basic events. This paper proposes an innovative methodology that uses a time-dependent covariate model to update the failure probability values of major contributing basic events in FTA. A novel subclass of the family of phase-type distributions is used to model the covariates corresponding to the basic events. The newly developed methodology is applied for a case study in a chlorine manufacturing facility to estimate the chlorine release probability. The blockage in the pipeline was identified as the significant reason for chlorine release from expert opinion and sensitivity analysis. The results of the proposed model of FTA are compared with that of conventional FTA.  相似文献   
5.
A high transition temperature superconducting microstrip structure is modeled using the theoretical approach developed by Coffey and Clem for elucidating the vortex effects in propagation. Impedance type Green’s functions are derived for the electric field around the strip and the propagation characteristics are computed for a wide range of applied field, reduced temperature and superconducting strip thickness in a Galerkin procedure. The increase of static field and temperature result in increased vortex motion, which in turn, causes a corresponding change in the propagation characteristics of the transmission line. Numerical results are presented for propagation parameters and quality factor.  相似文献   
6.
Ternary copper indium sulfide (CIS) nanocrystals (NCs) have been synthesized by mixing of binary precursor [CuI(bdpa)2][CuICl2] (1) and/or [CuI(mdpa)2][CuICl2] (2) (where, mdpa and bdpa represent methyl and benzyl ester of 3,5-dimethyl pyrazole-1-dithioic acid, respectively) with InCl3 in a low-temperature solvothermal process. The +1 oxidation state of copper and the atomic ratio Cu to S (1:2) is atomically maintained in the pyrazole-based Cu(I)–S precursor to synthesize phase pure CuInS2. Coordinating solvents like ethylene diamine (EN) and ethylene glycol (EG) have been used in the synthesis without any surfactants. No use of external surfactants in the synthesis of CIS nanoparticles reveals that precursor acts as stabilizing agent. The synthesized nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) studies. The optical property of the nanocrystals shows a pronounced quantum confinement effect in the particles with band gap energy ca. 1.5 eV. The formation mechanism of ternary CIS has been proposed. The pore size distributions of the particles show the average pore diameters 13.1 nm from 1 and 5.3 nm from 2. The calculated values of the specific surface area are 8.123 and 9.577 m2/g for 1 and 2, respectively. The excellent photocatalytic degradation of rose bengal (RB) and rhodamine B (RhB) was demonstrated by the porous CIS nanocrystals.
Graphical abstract Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3. Gopinath Mondal, Ananyakumari Santra, Sumanta Jana, Nimai Chand Pramanik, Anup Mondal and Pulakesh Bera
  相似文献   
7.
In the present work, we have investigated the nonlinear optical properties of self-assembled films formed from ZnO colloidal spheres by z-scan technique. The sign of the nonlinear component of refractive index of the material remains the same; however, a switching from reverse saturable absorption to saturable absorption has been observed as the material changes from colloid to self-assembled film. These different nonlinear characteristics can be mainly attributed to ZnO defect states and electronic effects when the colloidal solution is transformed into self-assembled monolayers. We investigated the intensity, wavelength and size dependence of saturable and reverse saturable absorption of ZnO self-assembled films and colloids. Values of the imaginary part of third-order susceptibility are calculated for particles of size in the range 20–300 nm at different intensity levels ranging from 40 to 325 MW/cm2 within the wavelength range of 450–650 nm. PACS 81.16.Dn; 42.65.-k; 42.65.An; 42.70.-a; 42.70.Nq; 78.20.Ci  相似文献   
8.
The need for efficient statistical models has increased with the flow of new data, which makes distribution theory a particularly interesting and attractive field. Here, we provide a thorough study of the applications of the Lindley distribution and its diverse generalizations. More precisely, we review some special applications in various areas, such as time series analysis, stress strength analysis, acceptance sampling plans and data analysis. We also conduct a comparative study between the Lindley distribution and some of its generalizations by using four real-life data sets.  相似文献   
9.
Sol-Gel Synthesis of Nanocrystalline PZT Using a Novel System   总被引:2,自引:0,他引:2  
A simple system has been developed for the preparation of lead zirconate titanate, Pb(Zr x Ti1 – x )O3 powders by sol-gel process. To achieve stable and homogeneous precursor solutions, chelating ligands such as acetic acid and acetylacetone have been used for the chemical modification of titanium and zirconium starting precursors. Phase-pure PZT powders were obtained, through a pyrochlore-free pathway, from the amorphous xerogel after heat treatment at 600°C. The formation of the crystalline phase, compositional homogeneity, sinterability, dielectric and piezoelectric characteristics of PZT are reported.  相似文献   
10.
The present work aims to prepare thermal and oxidation resistant Natural Rubber (NR) composites using antioxidant-modified nanosilica (MNS). The thermo-oxidative aging performance of the composites was evaluated by the variations in mechanical properties after aging at 100 °C for 24 h. The performance was further monitored through Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, and Dynamic Mechanical Analysis. NR nanocomposite with 1–7.5 phr nanosilica (NS) and 3 phr MNS were prepared and its rheological properties were studied. A comparative study of the theoretical models yielded that modified Guth-Gold equation predicted Young's modulus better than other models. Thermal stability of natural rubber MNS composite was improved by 10 °C with pre-eminent mechanical properties like tensile strength and heat build-up. A linear relationship of compression set with modulus of all composites were also established. Equilibrium swelling test revealed improved crosslink density in NR MNS composite. The strong interaction between antioxidant and nanosilica enabled low migration of antioxidant in NR MNS composite. Hence its protective function after aging showed more effective than NR NS composites. These versatile functional properties of NR MNS composite suggest its potential application in electrical, electronic and high performance rubber products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号